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Magnetic Susceptibility of the BH Molecule* 

Michat Jaszufiski 
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The coupled Har t ree-Fock (CHF) perturbation approach and its extension to 
multiconfiguration wavefunctions (MC CHF scheme) were used to calculate 
the magnetic susceptibility of the BH molecule. The results obtained for an 
SCF and two pair-excitation MC SCF functions confirm the paramagnetism 
of the BH molecule and indicate a rather weak dependence of the computed 
molecular susceptibility on the correlation effects. 
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1. Introduction 

Atomic and molecular second-order properties, such as electric polarizability or 
magnetic susceptibility, are often calculated within the so-called Coupled Hartree-  
Fock (CHF) perturbation scheme [1, 2]. There are many advantages of the CHF 
approach, thus: it can be used for a wide range of properties t-2] and it circumvents 
the sum-over-states approximation, as in the computations one needs to know 
only the wavefunction of  a given atomic or molecular state and the virtual orbitals. 
Finally, if the CHF calculation requires too much numerical effort one can easily 
introduce further simplifying approximations [3]. However, as the CHF scheme 
corresponds to the Har t ree-Fock approach for the perturbed system it becomes 
unreliable for systems which have to be described using many-determinant wave- 
functions. 

To estimate the role of the correlation corrections to second-order properties one 
can use an extension of the CHF approach. We have proposed such an extension 
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for multiconfiguration self-consistent field (MC SCF) functions [4, 5]. The 
equations of this scheme for a MC SCF function including only pair diagonal 
excitations [6] were discussed in detail in Ref. [4]. It seems that in this approach, 
which we call MC CHF perturbation scheme, all the advantages of the CHF are 
retained and one can additionally analyse the correlation dependence of molecular 
properties. 

As a numerical example we have chosen the magnetic susceptibility of the boron 
hydride (BH) molecule. There are two reasons for this choice-first, according 
to the CHF calculations, BH should be paramagnetic [-1, 7, 8]. Although in 
principle a closed-shell molecule can be paramagnetic [-9, 10] this is an exceptional 
result. The CHF calculation of Hegstrom and Lipscomb [8] was performed using 
an extended STO basis set and the results are almost gauge-invariant, thus they 
provide a reliable reference for the other computations. The second reason is that 
there are many correlated wavefunctions for the ground state of BH (see Ref. [11] 
and references therein). Therefore, it is also possible to compare a MC SCF 
function with other wavefunctions used to discuss correlation effects. However, to 
our knowledge, the correlated wavefunctions were used to analyse the first-order 
properties of BH only, and except for the qualitative discussion given in [8] there is 
no estimate of the influence of correlation on the magnetic susceptibility of BH. As 
this molecule has a n orbital of low energy, this influence could be of some sig- 
nificance. 

2. The SCF and MC SCF Wavefunctions 

All the calculations were performed using the same CGTO basis set. More 
polarization functions were included than would be used to obtain an energy- 
optimized basis, as the second-order properties depend strongly on the virtual 
orbitals. There are some criteria to check the usefulness of a basis set, such as 
gauge invariance of the results or completeness of the set with respect to a given 
perturbing operator I-121, but in this case we were interested in recovering simul- 
taneously a significant part of the correlation energy. 

The basis set was composed of 11 s, 7p and 1 d orbitals on the B atom and 6s and 6p 
on the H atom, contracted to a (6, 4, 1/3, 2) CGTO basis. The exponents and con- 
traction coefficients for boron s, p and hydrogen s orbitals were taken from Refs. 
[,13, 14], the polarization functions were chosen by comparison with expansions 
of STO's [3, 15]. 

The resulting SCF wavefunction gives the total energy of -25.12798 a.u., which 
is close to the estimated Hartree-Fock limit (-25.1314 a.u., [,16-1) and compares 
favourably with other calculations using basis sets of this quality [,11 ]. The dipole 
moment, 1.769 D, is also similar to the value of Saunders and Guest [,11-1, i.e. 
1.778 D for a 43 STO basis. This indicates appropriate choice of the polarization 
functions. 

Using the MC SCF scheme in the approach proposed by Wood and Veillard [,17] 
we obtained four different wavefunctions. They included in the second set (the 
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set o f  weakly occupied orbitals) respectively: one a and one n (i.e. one n~ and one 
roy orbitals), one cr and two re, two 0- and two n and three o- and two n orbitals. The 
corresponding  correla t ion energies were (in a.u.) 0.052, 0.060, 0.070 and 0.074, 
while the best configurat ion interaction result [18] is 0.1332 a.u. Two of  our  
functions were not  used in further  calculat ions;  the first, as an analysis o f  the CI 
coefficients shows that  one n orbital does no t  correlate s imultaneously the 20- and 
3o- core orbitals;  and the third, as being very similar to the fourth.  The M C  SCF 
functions chosen finally for the calculations o f  the properties o f  BH are described 
in Table 1. The analysis o f  the CI  coefficients indicates that  the 30- (lone pair) 
orbital is correlated mainly by ln, the 20- (bond) by 4a and 2n and the la  (boron 
1 s) - by 50- orbital. The corresponding  contr ibut ions  to the correlat ion energy are 
in agreement  with the results o f  [11 ]. 

Table 1. The SCF and MC SCF wave- 
functions and the computed one-electron 
properties 

a Total energy in atomic units. 
b Orbital occupation numbers. 

Dipole moment in Debye. 
d Diamagnetic susceptibility in ppm-cgs, 

the gauge origin at the atom in the 
brackets. 

W a v e  

function SCF MC-I MC-II 

Etot a -25.128 -25.188 -25.202 
p(i)b 
!a 2.0 2.000 1.999 
2a 2.0 1.978 1.979 
3a 2.0 1.877 1.880 
4a - -  0.015 0.014 
17c~ = 1 ny - -  0.061 0.056 
2n:, = 2ny - -  0.004 0.004 
5a - -  - -  0.001 
6a - -  - -  0.008 
# c 1.769 1.373 1.487 
za(B) d - 18.199 - 17.751 - 17.904 
zd(H) d -- 38.061 -- 37.039 -- 36.358 

Fo r  a compar ison also a CI  calculat ion using all single and double excitations was 
performed.  The correlat ion energy obtained is 0.102 a.u. and the total energy is 
- 2 5 . 2 3 0 4  a.u. The quoted earlier CI result [18] yields -25 .2621  a.u., and the 
estimate o f  the correlat ion energy f rom the experimental  value o f  - 2 5 . 2 8 9  a.u. 
is 0.155 a.u. [19]. The results o f  our  CI computa t ions  were used to obtain the 
natural  orbitals. Their occupat ion  numbers  are in good  agreement  with the 
occupat ion  numbers  for the M C  SCF functions and with another  CI  calcula- 
t ion [20]. 

3. The CHF Results 

Using the SCF wavefunct ion we have done  a s tandard C H F  calculation o f  the 
magnet ic  susceptibility, Z, for gauge origin of  the vector potential  o f  the magnetic 
field at the B a tom and at the H atom. The results are compared  with those o f  
Hegs t rom and Lipscomb [8] in Table 2. The diamagnet ic  susceptibility, Z ~, is in 
good  agreement  with reference values for both gauge origins. However ,  in our  
calculations the total value o f  X has a stronger gauge dependence due to a differ- 
ence in z P(H). Al though  in our  basis set the number  o f  virtual orbitals is not  
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sufficient to guarantee gauge invariance the error does not seem to be very im- 
portant. It is anyhow usually assumed that the value of)~ calculated with the gauge 
origin nearer to the electronic centroid (minimum of Z p) is more reliable [21]. 
Secondly, an analysis of the orbital contributions shows that the gauge dependence 
arises from an error in X p (H) of the first orbital (2.79 ppm--cgs in our computations, 
8.31 ppm-cgs in [8]). The contribution of the first orbital to X p (B) is 0.0 ppm--cgs 
in both calculations. Thus it seems that our basis set is good enough to give a 
reliable value of X, at least for the gauge origin at the B atom. Our results can also 
be compared with a recent calculation [22] using finite perturbation method and 
gauge invariant atomic orbitals. 

Table 2. BH magnetic susceptibility - the CHF results (in 
ppm-cgs) 

Gauge 
origin B H 

This work Ref. [8] This work Ref. [8] 

Z a -18.20 -18.02 -38.06 -37.78 
X p 36.02 36.77 5 1.21 56.30 
Z 17.82 18.75 13.15 18.52 

4. The MC CHF Results 

The MC CHF calculations were performed using a modification of the approach 
described in Ref. [4]. It was observed that this scheme including all the excitations 
(i.e. an expansion of the perturbation correction to each of the orbitals into the full 
set of the unperturbed orbitals) leads to instability of the results. The instability 
indicates that the corresponding functional has a non-positive definite matrix of 
the second-order derivatives. The appropriate modifications are based on the 
neglect of some of the excitations from the weakly occupied orbitals. 

The simplest way to obtain a proper functional is to neglect systematically all the 
excitations from the set of the weakly occupied orbitals (except the de-excitations 
to the strongly occupied, first set orbitals, which retain the orthonormality of the 
two sets). Such an approach is justified, as the contribution of each orbital to the 
total susceptibility is approximately proportional to the square of its occupation 
number. In a very similar manner in the calculation of the two-particle two-hole 
corrections in the time-dependent Hartree-Fock approximation one does not 
include the terms "square in the correlation coefficient" [23]. We shall denote in 
what follows by the symbol "A"  the results obtained in this scheme. 

Another approach is based on the elimination of only those excitations which lead 
to non-definiteness of the Hessian matrix (in T D H F  language corresponding to 
negative excitation energies). Thus, e.g. for the MC-I function it was suff• 
to eliminate the excitations from the highest occupied (weakly) 2re orbital to 
the four lowest unoccupied o- orbitals. The results of this approximation, for 
which we use the letter B, are better as the corresponding variational function 
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is more flexible (richer). This approach can be applied either by analysing the eigen- 
values of the Hessian matrix, or, if the first-order perturbation equations are 
solved iteratively as is often done in the CHF calculations, by analysing the con- 
vergence of the iterative procedure. We have used, for computational reasons, the 
iterative technique. 

The final results for the MC CHF magnetic susceptibilities are shown in Tables 3 
and 4. As expected, they are similar for the approximations A and B and better 
()~ P is determined variationally for the scheme B). 

In comparison with the CHF calculation there is a significant difference in the 
individual orbital contributions, reflecting the change in ~ and 3a orbitals. It is 
observed that for the MC SCF functions the 2a and 3a orbitals ascribed to the bond 
and to the lone pair respectively differ from the SCF eigenvectors. Similarly an 
analysis of the aforementioned natural orbitals shows that the first is almost equal 

Table 3. Orbital contributions to the total susceptibility Z (B), 
(in ppm--cgs) 

Wave S C F  

function M C - I I  S C F  Ref .  [8 ]  

A ~ B . 

Orbital 

l a  - 0 . 2 2  - 0 . 2 2  - 0.23 - 0.2 

2a  + 6 . 1 3  + 7 . 2 3  - 4 .03 - 3.8 

3a  + 5 . 9 5  + 7 . 6 6  + 2 2 . 0 8  + 2 2 . 8  

4 a  - 0 . 0 6  + 0 . 0 1  - -  - -  

17~x= 1~ r - 0 . 4 8  - 0 . 6 4  - -  - -  

27L, = 2~ r -- 0.03 -- 0.01 - -  - -  

5a  - - 0 . 0 0  - 0 . 0 0  - -  - -  

6or - 0 . 0 7  + 0 . 0 4  - -  - -  

" F o r  the definition of the approximations A and B see text. 

Table 4. B H  magnetic susceptibility - the M C  C H F  results 
(in ppm-cgs)  

Gauge 
origin B H 

M C - I  M C - I I  M C - I  M C - I I  

Z d - 1 7 . 7 5  - 1 7 . 9 0  - 3 7 . 0 4  - 3 7 . 3 6  

A a 

)C p 29.64 28.61 42.11 40 .15  

)C 11.89 10.71 5.07 2.79 

B . 
X J' 32.16 31.31 46.17 45.33 

X 14.41 13.41 9.13 7.97 

a For the definition of the approximations A and B see text. 
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to the la SCF, but the second has an important contribution of3a SCF orbital and 
vice versa. However, the total molecular susceptibility is not affected by mixing 
of the orbitals if their occupation numbers are similar. Thus, the difference between 
the final CHF and MC CHF values is small, as the changes in the orbital contri- 
butions largely cancel each other. 

The final results shown in Table 4 correspond to the wavefunctions which recover 
about 50 percent of the molecular correlation energy. However, poorly described 
is in our calculations the correlation of the boron ls orbital, which does not 
contribute much to X. Additionally, the correction to the CHF susceptibility 
depends mainly on the difference between the total a and n orbital occupations, 
similar for the MC SCF functions used as for other quoted CI functions which 
yield a much better total energy. Therefore further improvement of the wave- 
function should not significantly change the computed susceptibilities. We have 
assumed in this analysis that the correlation energy given by the unperturbed wave- 
function provides an estimate of the quality of the computed correlation corrections 
to the second-order properties. Although this is a weak assumption, there seems 
to be no better criterion that could be applied in this case. 

5. Conclusions 

The exceptional paramagnetism of the BH molecule is an example of the influence 
of the external magnetic field on the nodal structure of the wavefunction. As shown 
by Hegstrom and Lipscomb [1, 8] and discussed in detail by Riess [24] and Heller 
and Hirschfelder [25], the intersection of the nodal manifolds of the real (un- 
perturbed) part of the orbital and the imaginary (first-order perturbed) part yields 
the vortex line of the paramagnetic current. The effect is most important for the 
3o- orbital. 

For a correlated wavefunction such an analysis seems to be much more compli- 
cated. First, a nodal manifold in an orbital does not necessarily imply a node in 
the total wavefunction. Secondly, the dia- and paramagnetic contributions of each 
orbital are weighed by the occupation numbers. Finally, what is perhaps most 
important, the symmetry restriction (o- basis for the unperturbed, n for the first- 
order perturbed orbitals) is relieved in our calculations. Due to all these effects one 
cannot expect any quantitative results from an analysis at the MC CHF level of the 
induced orbital currents. The numerical results show that the qualitative reasoning 
performed for the CHF approximation remains valid for the correlated wave- 
function. Although for the MC SCF functions the orbital picture is modified it 
does not change significantly the paramagnetism of the molecule. 
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